Chaotic Properties of the Q-state Potts Model on the Bethe Lattice: Q < 2

نویسندگان

  • Nerses S. Ananikian
  • Sarkis K. Dallakian
  • B. Hu
چکیده

The Q-state Potts model on the Bethe lattice is investigated for Q < 2. The magnetization of this model exhibits complicated behavior including both period doubling bifurcation and chaos. The Lyapunov exponents of the Potts–Bethe map are considered as order parameters. A scaling behavior in the distribution of Lyapunov exponents in the fully developed chaotic case is found. Using the canonical thermodynamic formalism of dynamical systems, the nonanalytic behavior in the distribution of Lyapunov exponents is investigated and the phase transition point on the “chaotic free energy” is located.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yang-Lee zeros of the Q-state Potts model on recursive lattices.

The Yang-Lee zeros of the Q-state Potts model on recursive lattices are studied for noninteger values of Q. Considering one-dimensional (1D) lattice as a Bethe lattice with coordination number equal to 2, the location of Yang-Lee zeros of 1D ferromagnetic and antiferromagnetic Potts models is completely analyzed in terms of neutral periodical points. Three different regimes for Yang-Lee zeros a...

متن کامل

Percolation on a Feynman Diagram

In a recent paper [1] we investigated Potts models on “thin” random graphs – generic Feynman diagrams, using the idea that such models may be expressed as the N → 1 limit of a matrix model. The models displayed first order transitions for all q > 2, giving identical behaviour to the corresponding Bethe lattice. We use here one of the results of [1] namely a general saddle point solution for a q...

متن کامل

ON THE PHASE DIGRAM OF THE q → 1 EXTENDED POTTS MODEL AND LATTICE ANIMAL COLLAPSE a

The phase diagram of the two-dimensional extended q−states Potts model is investigated in the q → 1 limit. This is equivalent to studying the phase diagram of a two-dimensional infinite interacting lattice animal. An exact solution on the Bethe lattice and a Migdal-Kadanoff renormalization group calculation predict a line of θ transitions from an extended to a compact phase in the lattice anima...

متن کامل

On Gibbs Measures of P -adic Potts Model on the Cayley Tree

We consider a nearest-neighbor p-adic Potts (with q ≥ 2 spin values and coupling constant J ∈ Qp) model on the Cayley tree of order k ≥ 1. It is proved that a phase transition occurs at k = 2, q ∈ pN and p ≥ 3 (resp. q ∈ 2N, p = 2). It is established that for p-adic Potts model at k ≥ 3 a phase transition may occur only at q ∈ pN if p ≥ 3 and q ∈ 2N if p = 2.

متن کامل

Finite-size Corrections for Integrable Systems and Conformal Properties of Six-vertex Models

Statistical systems at second-order phase-transition points should exhibit conformal invariance at long distances. Their conformal properties can be analysed by investigating finite-size scaling behaviour. For integrable lattice models in two dimensions, methods are proposed to calculate, from the Bethe ansatz solution, the conformal anomaly c and all scaling dimensions. As an application resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1997